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ABSTRACT:  Building on the fact that the neighborhood-controlled fuzzy upper and lower rough 

approximation operators [X. Han, W. Yao, C.-J. Zhou, Topology and its Applications, 2025)] form a 

pair of extensive and anti-extensive transforms, we introduce new variants of the morphological 

gradient based on these fuzzy rough approximations. To empirically evaluate their performance, we 

employ a comparative visualization methodology centered on the superposition of resulting gradient 

images, allowing for an intuitive and direct comparison of edge detection capabilities and noise 

sensitivity. For the purpose of this study, we developed a dedicated software framework in the C 

programming language. Pixel-level image manipulation and visualization are facilitated by the SDL3 

library.  

KEY WORDS:  fuzzy upper rough approximations, fuzzy lower rough approximations, 

morphological gradient. 

 

 

1. INTRODUCTION 

 

 Edge detection continues to be a 

fundamental pillar of image analysis, 

providing crucial information for 

segmentation, recognition, and feature 

extraction tasks [8]. Among the numerous 

techniques developed, morphological 

gradients, derived from the principles of 

mathematical morphology, offer a robust, non-

linear alternative to differential methods by 

emphasizing geometrical and topological 

properties of images rather than local intensity 

derivatives (see [5], [7]).  

 The classical morphological gradient, 

defined as the difference between the dilation 

and erosion of an image by a structuring 

element, has proven effective in highlighting 

transitions in intensity while maintaining 

resilience to small-scale noise. Despite its 

success, the traditional morphological gradient 

may not optimally capture subtle variations in 

texture or contrast, nor does it always yield 

edge representations well-suited for 

subsequent segmentation. For this reason, 

numerous extensions and variants have been 

proposed, such as internal and external 

gradients, regularized gradients (see [5], [1]) 

and multiscale morphological operators, to 

improve localization, continuity, and 

robustness. Nevertheless, there remains a need 

for systematic exploration of alternative 

formulations that can better balance sensitivity 

to fine details with resistance to noise and scale 

variations. 

 In this paper, we introduce several new 

variants of the morphological gradient based 

on fuzzy rough sets (specifically, on 

neighborhood-controlled fuzzy upper and 

lower rough approximation operators [2]). 

Each variant is formulated by modifying the 

morphological operations or their 

combination, yielding distinct gradient 

responses. 

 To evaluate the performance and 

characteristics of these new operators, we 

propose a comparative visualization method 

based on the superposition of the resulting 

gradient images. Specifically, for each input 

image, the new gradient and the classical 
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gradient are computed and overlaid; points 

where the two coincide are highlighted with a 

distinct color. This visual correspondence 

provides an intuitive means of assessing the 

similarity, complementarity, or divergence 

between the proposed variants and the standard 

morphological gradient. Through this 

comparison, we aim to identify which 

modifications preserve essential edge 

information, which yield additional or refined 

contours, and which suppress spurious 

responses. 

 

2. NEIGHBORHOOD-CONTROLLED 

FUZZY ROUGH APPROXIMATION 

OPERATORS AND GRADIENTS  

 

A hemimetric on a space X is a function 

d : X  X → [0, ∞) 

satisfying the conditions: 

1) d(x, x) = 0 for all x  X. 

2) d(x, z)  d(x, y) + d(y, z) for all x, y, z  X. 

  Let X be endowed with a preorder   (i.e. a 

reflexive and transitive relation). If 

d: X  X → [0, ∞) 

is a hemimetric on X with the property that 

there is c  ℝ such that that d(x, y)  c for all 

x, y  X, then 

d : X  X → [0, ∞), 

defined by  

d(x, y) =       d(x, y),  if x  y  

      c,        otherwise 

is a hemimetric. Indeed, let x, y, z  X. We 

write a  b if not (a  b). If x  z, then  

d(x, z) = d(x, z)  d(x, y) + d(y, z)   

              d(x, y) + d(y, z). 

If  x  z, then x  y  or y  z. Consequently, 

d(x, y) = c or d(y, z) = c. Therefore, 

d(x, z) = c  d(x, y) + d(y, z). 

Let us consider a hemimetric d on a space 

X and as in [ha] let us denote by  

F(X) = { : X → ℝ} 

the fuzzy subsets of X (ℝ is the field of all real 

numbers). Also, for x  X and r > 0, let us 

denote by  

Lr(x) = {s  X| d(s, x) < r} 

Rr(x) = {s  X| d(x, s) < r}, 

the left r-neighborhood and the right r-

neighborhood of x [2]. If d is a metric, or more 

general a pseudometric, then Lr(x) = Rr(x) = 

B(x, r) (the open ball of radius r). But if d is not 

symmetric, then Lr(x) and Rr(x) does not 

necessarily coincide. For instance, let us 

consider X be a bounded subset of ℝ2 and let 

d2 be the Euclidian metric on restricted to X. 

Let c  ℝ be such that  

c > diam(X) = sup{d2(p, q)| p, q  X} 

and as above for a preorder  on X, let us 

consider the hemimetric d2 defined by  

 d2(p, q) =  {
d2(p, q), if  p  q
c,         otherwise

 

Let's graphically represent the left r-

neighborhood Lr(p) (colored in blue) and the 

right r-neighborhood Rr(p) (colored in green) 

of a point p (colored in red) for the following 

preorders on X  ℝ2: 

1. (x1, y1) 1 (x2, y2) iff  x1  x2 and y1  y2 

2. (x1, y1) 2 (x2, y2) iff  x1  x2  

3. (x1, y1) 3 (x2, y2) iff  x1  x2 and y1 = y2 

 

In [2], the authors defined neighborhood-

controlled fuzzy upper rough approximation 

operators on X and lower rough approximation 

operators on X with respect to the radius r 

induced by the hemimetric d  

App̅̅ ̅̅ ̅r, Appr : F(X) → F(X) 

defined by 

App̅̅ ̅̅ ̅r()(x) = sup{(s) – d(s, x)| s  Lr(x)} 

Appr()(x) = inf{(s) + d(x, s)| s  Rr(x)} 

for all x  X and   F(X), where 

In [2] the r-closing operator is defined as the 

composition of upper-lower operators  

Appr ∘ App̅̅ ̅̅ ̅r, 

and the r-opening operator as the composition 

of lower-upper operators 

App̅̅ ̅̅ ̅r ∘ Appr, 

  1                        2                        3 

Figure 1. Left/right neighborhoods with 

respect to 𝑑2𝜌𝑖
, i = 1, 2, 3 
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For r = + ∞, the operators App̅̅ ̅̅ ̅rand Appr 

become the operators introduced in [9]. A 

convex combination  

App∞() + (1-)App̅̅ ̅̅ ̅∞(), 

for a suitable , was used in [9] to find a 

contour which is nearest to the digital surface 

. There are subtle distinctions among the 

terms "edge," "boundary," and "contour," as 

they are primarily conceptual notions rooted in 

experience rather than precise mathematical 

definitions [8]. For a brief explanation of their 

differences, see, for example, [8]. 

A morphological gradient is the 

difference between an extensive and an anti-

extensive transformation [5]. An operator 

: F(X) → F(X) 

is said to be extensive if   ≤ () for all   
F(X). An operator 

: F(X) → F(X) 

is said to be anti-extensive if  () ≤  for all 

  F(X). Since d(x, x) = 0, it follows that for 

all r > 0, we have 

Appr ()(x)  (x)  App̅̅ ̅̅ ̅r()(x). 

Hence Appr is anti-extensive and App̅̅ ̅̅ ̅r is 

extensive. Based on these observations we 

define the following versions of morphological 

gradients with respect to a fixed hemimetric d: 

symmetric morphological gradient 

 𝑔𝑟() = App̅̅ ̅̅ ̅r() - Appr ()  

internal morphological gradient 

gr
−() =  - Appr () 

external morphological gradient 

gr
+() = App̅̅ ̅̅ ̅r() -  

 

Figure 2 illustrates the morphological 

gradients in the aforementioned context for the 

standard Lenna image rendered in grayscale in 

two variants. The first variant 1 employs 

luminance, calculated as Y = 0.2126 * R + 

0.7152 * G + 0.0722 * B, derived from Linear 

RGB to Y (Rec. 709 luminance formula). The 

second variant 2 incorporates the L* 

component from the CIELAB color space, 

which represents lightness, following a 

linearization step (sRGB → Linear RGB). In 

the example d is the Euclidian metric. The 

gradients are displayed in an inverted 

(negative) form without any normalization. 

After applying morphological operations, 

the resulting image often contains a range of 

intensity values representing potential edges 

with varying strengths (as we can see, for 

instance, in Figure 2). By applying a threshold, 

weak or irrelevant responses (typically caused 

by texture, illumination changes, or noise) are 

suppressed, while strong transitions are 

preserved. Next, we will evaluate three 

different global thresholding methods that 

utilize gradient histograms. The choice of a 

global threshold for edge or contour detection 

based on the gradient histogram is motivated 

by its simplicity, robustness, and 

computational efficiency. A global threshold 

determines a single decision boundary for the 

entire image, which is particularly effective 

when illumination and contrast are relatively 

uniform. First variant that we use is based on 

simple valley analysis method or mode method 

[6]. Specifically, to determine the global 

threshold based on the histogram of one of 

morphological gradients, the algorithm 

follows these steps: 

1. Histogram smoothing: The algorithm 

first smooths the histogram (using a Gaussian 

filter) to remove small fluctuations or noise, 

making the main intensity peaks more evident. 

2. Find the main peak: The global 

maximum represents the most common 

intensity value (typically corresponding to the 

background or the dominant region in the 

image). 

3. Search for a valley: After this main 

peak, the algorithm looks for a local minimum 

  i              𝑔𝑟(i)         gr
−(i)        gr

+(i) 

 

Figure 2. Inverted morphological 

gradients based on rough approximations 
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(a “valley”); this usually lies between two 

classes of pixels (background vs. object). 

4. Depth check: The valley is accepted 

only if it is significantly lower (less than 30% 

of the height of the main peak in 

implementation used here). This ensures it’s a 

meaningful separation between two intensity 

clusters. 

5. Fallback mechanism: If no clear valley 

is detected (for instance, if the image has no 

distinct bimodal distribution), the algorithm 

uses the percentile methods (p-tile method 

[sa]): finds the intensity value (or histogram 

bin) that corresponds to a given percentile of 

the total pixel distribution; for the examples in 

this paper, we use the 80th percentile of the 

intensity values. 

The second method selected for 

determining the optimal threshold is the Otsu 

method [4], which maximizes the between-

class variance, applied after gradient 

normalization. 

The third approach for automatic threshold 

selection used in this paper is the Ng valley-

emphasis method [3], which is also applied 

after gradient normalization. 

For instance, in the case of ω₂ (the second 

grayscale conversion variant of the Lenna 

image), the simple valley yields a threshold of 

t = 117. The Otsu method yields a threshold of 

t = 36, while the valley-emphasis method 

produces t = 37 (d the Euclian metric). The 

corresponding (inverted) thresholded 

gradients, computed using the symmetric 

morphological gradient within the rough 

approximation framework, are presented in 

Figures 3 and 4. 

 

 

 

 

Let's consider a test image Figure 5 that 

contains several random geometric shapes. In 

the following examples d is the Euclidian 

metric. 

 

Figure 6 illustrates the thresholded 

symmetric morphological gradients within the 

rough approximation context for the two 

variants of grayscale of test image in Figure 5 

(at the top of the figure 1 is obtained using 

Rec. 709 luminance formula and at the bottom 

of the figure 2 is obtained using L*) using 

automatic threshold selection by: 1 – simple 

valley method, 2 – Otsu method and 3 – Ng 

valley-emphasis method. 

 

 

 

 

 

 

 

 

 

 

Figure 7 displays the thresholded 

morphological gradients overlaid on images 1 

𝑔𝑟(2), r = 2            histogram 

Threshold t = 37 

Figure 4. (valley emphasis method) 

 

𝑔𝑟(2), r = 2            histogram 

Threshold t = 117 

Figure 3.  (valley method) 

 

Figure 5. Test image (shapes) 

      i          1 (valley)   2 (Otsu)       3 (Ng) 

Figure 6. Inverted thresholded 𝑔𝑟(i), r = 2  
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and 2. The symmetric gradient is shown in 

red, the internal gradient in green, and the 

external gradient in blue. The threshold is 

determined using simple valley method, r = 2. 

 

 

 

 

 

 

 

 

 

In Figure 8, all thresholded gradients are 

displayed using the RGB color model: the 

symmetric gradient appears in the red channel, 

the internal gradient in green, and the external 

gradient in blue. Therefore, when all gradients 

detect the point as being on an edge (or 

contour), it is visualized using white. Points in 

magenta were detected by symmetric and 

external gradient, points in yellow by 

symmetric and internal gradients and points in 

cyan by internal and external gradients. The 

threshold is determined using simple valley 

method. At the top of the figure r = 5 and at the 

bottom r = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, in Figure 9 all all thresholded 

gradients are displayed using the RGB color 

model next to grayscale versions of the same 

images: (at the top of the figure 1 is obtained 

using Rec. 709 luminance formula and at the 

bottom of the figure 2 is obtained using L*) 

The threshold is determined using Ng valley 

emphasis method. The radius used in Figure 9 

is r = 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. COMPARISON OF GRADIENTS  

BASED ON ROUGH APPROXI -

MATIONS WITH CLASSICAL MOR -

PHO-LOGICAL GRADIENTS 

 

Classical morphological gradient, 

computed through simple erosion and dilation 

operations, have been fundamental tools for 

edge detection and shape analysis due to their 

simplicity and computational efficiency. Let’s 

us recall (and extend) their definition in our 

framework. 

We denote by 

δr, ℇr: F(X) → F(X) 

the operators defined by 

δr ()(x) = sup{(s) | s  Lr(x)} 

ℇr()(x) = inf{(s) | s  Rr(x)}. 

Let us note that if X is endowed with a group 

structure with the unit element denoted by 0 

and the hemimetric d is translation invariant, 

then  δr is the classical dilation operator with 

the structuring element Lr(0), and ℇr is the 

classical erosion operator with the structuring 

element Rr(0). Although in the case where the 

hemimetric is not translation invariant these 

operators no longer represent the classical 

dilation and erosion, in this paper we agree to 

call them dilation and erosion. We note that if 

the hemimetric does not have the symmetry 

property the structuring element Lr(0) for  δr  

is different from the structuring element Rr(0) 

for  ℇr. 

   𝑔𝑟(i)                gr
−(i)            gr

+(i) 

Figure 7 

        1                                    2 

Figure 8.  𝑔𝑟(i)R + gr
−(i)G + gr

+(i)B 

           i         𝑔𝑟(i)R+gr
−(i)G+gr

+(i)B 

Figure 9. Ng threshold, r = 8 
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Since x  Lr(x) and x Rr(x), for all  in 

F(X), we have ℇr()    δr (). Thus, we 

can define morphological gradients using δr, 

ℇr even if the hemimetric d is not symmetric or 

not translation invariant: 

∇r()   = δr ()  - ℇr() 

∇r
−()  =  - ℇr() 

∇r
+()  = δr () - . 

In the following, we will call  ∇r, ∇r
−, ∇r

+  

classical symmetric morphological gradient, 

classical internal morphological gradient, and 

classical external morphological gradient, 

respectively.  

To facilitate a comparative analysis 

between the gradients derived from the rough 

approximation framework and the traditional 

morphological gradients (utilizing various 

automated thresholding techniques), we 

introduce a visualization approach based on 

superimposing the resulting gradient images. 

Specifically, for each input image, both the 

new gradient and the classical gradient are 

computed and overlaid. Points corresponding 

to contours or edges identified by the new 

gradient are highlighted in red, those from the 

classical gradient are shown in green, and 

regions where both gradients agree are 

displayed in black. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the top of Figure 10 the figure 1 is obtained 

using Rec. 709 luminance formula and at the 

bottom of the figure 2 is obtained using L*. 

The threshold is determined using Otsu 

method. The radius used in Figure 10 is r = 7.  

 

 

 

 

4. MULTISCALE REGULARIZED 

GRADIENTS 

 

We also propose a multiscale regularized 

gradient in a similar way with the algorithm 

presented in [b] based on the regularized 

gradient [ri]. Let us consider a sequence of n 

positive real numbers  = (r1, r2,  …, rn)  such 

that 

r1 < r2 < … < rn 

 Algorithm for computing the multiscale 

regularized gradient g() using the scale  

1. compute gr1
()  App̅̅ ̅̅ ̅r1() - Appr1() 

2. g()  gr1
() 

3. for i = 2 to n do 

    //compute “regularized” gradient at scale ri 

      gri
()  App̅̅ ̅̅ ̅ri() - Appri() 

      gri
()    gri

() - App̅̅ ̅̅ ̅ri ∘ Appri(gri
()) 

      gri
()  Appri−1(gri

() )   

    //update g() 

      g()  sup {g(), gri
()} 

   end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 11 we compare the results of 

the preceding algorithm for ri = 1.5 + I, 

applied to the image 2 (obtained using L*, 

see Figure 10) for n = 2 and n = 8. The 

threshold employed is determined by 

selecting the minimum value among the 

thresholds for symmetric, internal, and 

external gradients associated with gn(2) all 

𝑔𝑟(i) + ∇r(i) gr
−(i) + ∇r

−(i)  gr
+(i)+ ∇r

+()  

Figure 10. Otsu threshold, r = 7 

 Figure 11 
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computed using Otsu method (n= 2 versus n = 

8). The images g2(2) and g8(2) are overlaid 

as in Section 3. Points displayed in green are 

points added by g8(2). 

 

5. CONCLUSION 

 

In this paper, we defined new variants of 

the morphological gradient constructed from 

the neighborhood-controlled fuzzy upper and 

lower rough approximation operators 

(introduced in [2]), leveraging their extensive 

and anti-extensive nature as a natural 

analogue to dilation and erosion. To assess 

how these fuzzy rough gradients compare to 

their classical counterparts, we employed a 

comparative visualization approach based on 

the superposition of resulting gradient images. 

Our C implementations, using SDL3 for 

efficient pixel access, enabled a controlled and 

reproducible evaluation framework. 

The experimental results indicate that the 

proposed operators behave in a broadly 

similar manner to the classical morphological 

gradient, while exhibiting a tendency to 

produce thinner and more localized edge 

structures (although more tests are needed). 

This behavior suggests that the fuzzy rough 

formulations may offer advantages in contexts 

where fine-grained or uncertainty-sensitive 

edge delineation is desirable. However, our 

present study is limited to the Euclidean 

distance, chosen deliberately to maintain 

exact comparability with the classical 

operators, and relies on a global automatic 

thresholding scheme. 

Future work will address these limitations 

by incorporating hemimetrics tailored to local 

intensity variations, thereby allowing the 

fuzzy rough operators to better accommodate 

heterogeneous or textured regions. Such an 

extension is expected to further reveal the 

potential of these operators as flexible, 

context-adaptive tools within the broader 

domain of morphological image analysis. 

   

REFERENCES 

 

[1] J.-C. Bricola, M. Bilodeau and S. Beucher. A 

multi-scale and morphological gradient 

preserving contrast, 14th International 

Congress for Stereology and Image Analysis, 

Jul 2015, Liege, Belgium. hal-01158715v2 

[2] X. Han, W. Yao, C.-J. Zhou, A fuzzy   

topological   model   of   hemimetric-based   

fuzzy   rough   set and   some   applications   to   

digital   image   processing, Topology and its 

Applications, 367 (2025), 109327. 

[3] H. Ng, Automatic thresholding for defect 

detection, Pattern Recognition Letters, 27 

(2006), 1644 - 1649. 

[4] N. Otsu, A threshold selection method from 

gray-level histograms, IEEE Transactions on 

Systems Man Cybernet, SMC-9 (1) (1979), 

62–66. 

[5] J. F Rivest, P. Soille and S. Beucher, 

Morphological gradients. In SPIE/IS&T 1992 

Symposium on Electronic Imaging: Science 

and Technology (pp. 139-150). International 

Society for Optics and Photonics, 1992. 

[6] P.K Sahoo, S Soltani and A.K.C Wong, A 

survey of thresholding techniques, Computer 

Vision, Graphics, and Image Processing, 41 

(2) (1988), 233-260. 

[7] F. Y. Shih, Image Processing and 

Mathematical Morphology Fundamentals and 

Applications, CRC Press, 2009. 

[8] D. Yang, B. Peng, Z. Al-Huda, A. Malik and 

D. Zhai, An overview of edge and object 

contour detection, Neurocomputing, 488 

(2022), 470-493. 

[9] W. Yao, G. Zhang, C.-J. Zhou, Real-valued   

hemimetric-based   fuzzy   rough   sets   and   

an   application to   contour   extraction   of   

digital   surfaces, Fuzzy Sets and Systems 459 

(2023), 201–219. 

 

 


