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MORPHOLOGICAL GRADIENTS BASED ON NEIGHBORHOOD-
CONTROLLED FUZZY ROUGH APPROXIMATIONS: A COMPARATIVE
VISUALIZATION STUDY
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ABSTRACT: Building on the fact that the neighborhood-controlled fuzzy upper and lower rough
approximation operators [X. Han, W. Yao, C.-J. Zhou, Topology and its Applications, 2025)] form a
pair of extensive and anti-extensive transforms, we introduce new variants of the morphological
gradient based on these fuzzy rough approximations. To empirically evaluate their performance, we
employ a comparative visualization methodology centered on the superposition of resulting gradient
images, allowing for an intuitive and direct comparison of edge detection capabilities and noise
sensitivity. For the purpose of this study, we developed a dedicated software framework in the C
programming language. Pixel-level image manipulation and visualization are facilitated by the SDL3
library.

KEY WORDS: fuzzy upper rough approximations, fuzzy lower rough approximations,
morphological gradient.

1. INTRODUCTION numerous extensions and variants have been
proposed, such as internal and external
Edge detection continues to be a gradients, regularized gradients (see [5], [1])
fundamental pillar of image analysis, and multiscale morphological operators, to
providing crucial information for improve  localization,  continuity, and
segmentation, recognition, and feature robustness. Nevertheless, there remains a need
extraction tasks [8]. Among the numerous for systematic exploration of alternative
techniques developed, morphological formulations that can better balance sensitivity
gradients, derived from the principles of to fine details with resistance to noise and scale
mathematical morphology, offer a robust, non- variations.
linear alternative to differential methods by In this paper, we introduce several new
emphasizing geometrical and topological variants of the morphological gradient based
properties of images rather than local intensity on fuzzy rough sets (specifically, on
derivatives (see [5], [7]). neighborhood-controlled fuzzy upper and
The classical morphological gradient, lower rough approximation operators [2]).
defined as the difference between the dilation Each variant is formulated by modifying the
and erosion of an image by a structuring morphological operations or their
element, has proven effective in highlighting combination, yielding distinct gradient
transitions in intensity while maintaining responses.
resilience to small-scale noise. Despite its To evaluate the performance and
success, the traditional morphological gradient characteristics of these new operators, we
may not optimally capture subtle variations in propose a comparative visualization method
texture or contrast, nor does it always yield based on the superposition of the resulting
edge  representations  well-suited  for gradient images. Specifically, for each input
subsequent segmentation. For this reason, image, the new gradient and the classical
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gradient are computed and overlaid; points
where the two coincide are highlighted with a
distinct color. This visual correspondence
provides an intuitive means of assessing the
similarity, complementarity, or divergence
between the proposed variants and the standard
morphological  gradient.  Through this
comparison, we aim to identify which
modifications  preserve essential edge
information, which yield additional or refined
contours, and which suppress spurious
responses.

2. NEIGHBORHOOD-CONTROLLED
FUZZY ROUGH APPROXIMATION
OPERATORS AND GRADIENTS

A hemimetric on a space X is a function
d: XxX—[0, o)
satistfying the conditions:
1) d(x,x) =0 forall x € X.
2)d(x,z)<d(x,y) +d(y,z) forall x,y,z € X.
Let X be endowed with a preorder p (i.e. a
reflexive and transitive relation). If
d: X x X — [0, )
is a hemimetric on X with the property that
there is ¢ € R such that that d(x, y) < ¢ for all
X,y € X, then
dp:XXX—> [0,00),
defined by
do(x, y) = { d(x,y), ifxpy
c, otherwise
is a hemimetric. Indeed, let x, y, z € X. We
write a p b if not (a p b). If x p z, then
do(x, z) =d(x, z) < d(x, y) + d(y, z) <
< do(x, ) + do(y, 2).
If xpz thenx py oryp z Consequently,
dp(x, y) = ¢ or dp(y, z) = c. Therefore,
do(X, z) = ¢ < dp(x, y) + dp(y, 2).
Let us consider a hemimetric d on a space
X and as in [ha] let us denote by
FX)={w: X—> R}
the fuzzy subsets of X (R is the field of all real
numbers). Also, for x € X and r > 0, let us
denote by
Li(x)= {s € X| d(s, x) <r}
Ri(x) = {s € X| d(x, s) <r1},
the left r-neighborhood and the right r-
neighborhood of x [2]. If d is a metric, or more
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general a pseudometric, then Li(x) = R¢(x) =
B(X, r) (the open ball of radius r). But if d is not
symmetric, then Li(x) and Ri«(x) does not
necessarily coincide. For instance, let us
consider X be a bounded subset of R? and let
d> be the Euclidian metric on restricted to X.
Let ¢ € R be such that

¢ > diam(X) = sup{d2(p, 9)[ p, q € X}
and as above for a preorder p on X, let us
consider the hemimetric dzp defined by

_ {d2(p,q), if ppq

d2p(p. ) = {c, otherwise
Let's graphically represent the left r-
neighborhood L.(p) (colored in blue) and the
right r-neighborhood R«(p) (colored in green)
of a point p (colored in red) for the following
preorders on X — R%:
1. (x1, y1) p1 (x2, y2) iff X1 <x2and y1 <y2
2. (x1, y1) p2 (x2, y2) iff x1 <%0
3. (X1, y1) p3 (x2, y2) iff X1 <x2and y1 =y2

p1 p2 p3

Figure 1. Left/right neighborhoods with
respect to dyp,1=1,2,3

In [2], the authors defined neighborhood-
controlled fuzzy upper rough approximation
operators on X and lower rough approximation
operators on X with respect to the radius r
induced by the hemimetric d

App", App": F(X) > F(X)
defined by
App"(@)(x) = sup{w(s) — d(s, x)| s € Li(x)}
App/(®)(x) = inf{o(s) + d(x, 5)| s € Re(x)}
for all x € X and ® € F(X), where
In [2] the r-closing operator is defined as the
composition of upper-lower operators

App’ ° App’,

and the r-opening operator as the composition
of lower-upper operators

App' ° App’,
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For r = + oo, the operators App“and App’

become the operators introduced in [9]. A
convex combination
AApp” () + (1-A)App” (®),

for a suitable A, was used in [9] to find a
contour which is nearest to the digital surface
®. There are subtle distinctions among the
terms "edge," "boundary," and "contour," as
they are primarily conceptual notions rooted in
experience rather than precise mathematical
definitions [8]. For a brief explanation of their
differences, see, for example, [8].

A morphological gradient is the
difference between an extensive and an anti-
extensive transformation [5]. An operator

O: F(X) > F(X)
is said to be extensive if ® < ®(w) forall ® €
F(X). An operator

¥Y: F(X) > FX)
is said to be anti-extensive if ¥(®) < o for all
o € F(X). Since d(x, x) =0, it follows that for
all r> 0, we have

App' (0)(x) < 0(x) < APP"(@)(x).
Hence App' is anti-extensive and App' is
extensive. Based on these observations we
define the following versions of morphological
gradients with respect to a fixed hemimetric d:
symmetric morphological gradient
9r(©®) = App'(®) - App" (@)
internal morphological gradient
g (@) = o - App (0)
external morphological gradient
g (w) = App"(0) - ®

\‘\

i gr(@)  gr(wi) g (i)
Figure 2. Inverted morphological

gradients based on rough approximations
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Figure 2 illustrates the morphological
gradients in the aforementioned context for the
standard Lenna image rendered in grayscale in
two variants. The first variant ®1 employs
luminance, calculated as Y = 0.2126 * R +
0.7152 * G + 0.0722 * B, derived from Linear
RGB to Y (Rec. 709 luminance formula). The
second variant ®> incorporates the L*
component from the CIELAB color space,
which represents lightness, following a
linearization step (SRGB — Linear RGB). In
the example d is the Euclidian metric. The
gradients are displayed in an inverted
(negative) form without any normalization.

After applying morphological operations,
the resulting image often contains a range of
intensity values representing potential edges
with varying strengths (as we can see, for
instance, in Figure 2). By applying a threshold,
weak or irrelevant responses (typically caused
by texture, illumination changes, or noise) are
suppressed, while strong transitions are
preserved. Next, we will evaluate three
different global thresholding methods that
utilize gradient histograms. The choice of a
global threshold for edge or contour detection
based on the gradient histogram is motivated
by its  simplicity, robustness, and
computational efficiency. A global threshold
determines a single decision boundary for the
entire image, which is particularly effective
when illumination and contrast are relatively
uniform. First variant that we use is based on
simple valley analysis method or mode method
[6]. Specifically, to determine the global
threshold based on the histogram of one of
morphological gradients, the algorithm
follows these steps:

1. Histogram smoothing: The algorithm
first smooths the histogram (using a Gaussian
filter) to remove small fluctuations or noise,
making the main intensity peaks more evident.

2. Find the main peak: The global
maximum represents the most common
intensity value (typically corresponding to the
background or the dominant region in the
image).

3. Search for a valley: After this main
peak, the algorithm looks for a local minimum
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(a “valley”); this usually lies between two
classes of pixels (background vs. object).

4. Depth check: The valley is accepted
only if it is significantly lower (less than 30%
of the height of the main peak in
implementation used here). This ensures it’s a
meaningful separation between two intensity
clusters.

5. Fallback mechanism: If no clear valley
is detected (for instance, if the image has no
distinct bimodal distribution), the algorithm
uses the percentile methods (p-tile method
[sa]): finds the intensity value (or histogram
bin) that corresponds to a given percentile of
the total pixel distribution; for the examples in
this paper, we use the 80th percentile of the
intensity values.

The second method selected for
determining the optimal threshold is the Otsu
method [4], which maximizes the between-
class variance, applied after gradient
normalization.

The third approach for automatic threshold
selection used in this paper is the Ng valley-
emphasis method [3], which is also applied
after gradient normalization.

For instance, in the case of m: (the second
grayscale conversion variant of the Lenna
image), the simple valley yields a threshold of
t=117. The Otsu method yields a threshold of
t = 36, while the valley-emphasis method
produces t = 37 (d the Euclian metric). The
corresponding (inverted) thresholded
gradients, computed using the symmetric
morphological gradient within the rough
approximation framework, are presented in
Figures 3 and 4.

‘ Y )
- . / T
S
y N
gr(®2),r=2 histogram

Thresholdt=117
Figure 3. (valley method)
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histogram

gr(mz)a r= 2
Threshold t =37
Figure 4. (valley emphasis method)

Let's consider a test image Figure 5 that
contains several random geometric shapes. In
the following examples d is the Euclidian
metric.

’ °
T X

Figure 5. Test image (shapes)

Figure 6 illustrates the thresholded
symmetric morphological gradients within the
rough approximation context for the two
variants of grayscale of test image in Figure 5
(at the top of the figure m; is obtained using
Rec. 709 luminance formula and at the bottom
of the figure . is obtained using L*) using
automatic threshold selection by: 1 — simple
valley method, 2 — Otsu method and 3 — Ng
valley-emphasis method.

‘Nf'\og > ,:<>/\\ N &
S !-/‘;, £ Nl
L5
\ \C > f<>£,\ (‘{F\soﬁf
- \ (9 PR
i 1 (valley) 2 (Otsu) 3 (Ng)

Figure 6. Inverted thresholded g,-(®i), r =2

Figure 7 displays the thresholded
morphological gradients overlaid on images m1
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and 2. The symmetric gradient is shown in
red, the internal gradient in green, and the
external gradient in blue. The threshold is
determined using simple valley method, r = 2.

gr (01)
Figure 7

In Figure 8, all thresholded gradients are
displayed using the RGB color model: the
symmetric gradient appears in the red channel,
the internal gradient in green, and the external
gradient in blue. Therefore, when all gradients
detect the point as being on an edge (or
contour), it is visualized using white. Points in
magenta were detected by symmetric and
external gradient, points in yellow by
symmetric and internal gradients and points in
cyan by internal and external gradients. The
threshold is determined using simple valley
method. At the top of the figure r = 5 and at the
bottom r = 10.

Figure 8. g, ()R + g7 ()G + g} (0;))B

Similarly, in Figure 9 all all thresholded
gradients are displayed using the RGB color
model next to grayscale versions of the same
images: (at the top of the figure ®; is obtained
using Rec. 709 luminance formula and at the
bottom of the figure > is obtained using L*)
The threshold is determined using Ng valley
emphasis method. The radius used in Figure 9
isr=_8.
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o gr(0)R+g: (0)GHgf (0)B
Figure 9. Ng threshold, r =8

3. COMPARISON OF GRADIENTS
BASED ON ROUGH APPROXI -
MATIONS WITH CLASSICAL MOR -
PHO-LOGICAL GRADIENTS

Classical morphological gradient,
computed through simple erosion and dilation
operations, have been fundamental tools for
edge detection and shape analysis due to their
simplicity and computational efficiency. Let’s
us recall (and extend) their definition in our
framework.

We denote by

Or, €t F(X) > F(X)
the operators defined by

5r (w)(x) = sup{a(s) [ s € Li(x)}

Er(@)(x) =inf{m(s) | s € Re(x)}.

Let us note that if X is endowed with a group
structure with the unit element denoted by 0
and the hemimetric d is translation invariant,
then &, is the classical dilation operator with
the structuring element L.(0), and €, is the
classical erosion operator with the structuring
element Ri(0). Although in the case where the
hemimetric is not translation invariant these
operators no longer represent the classical
dilation and erosion, in this paper we agree to
call them dilation and erosion. We note that if
the hemimetric does not have the symmetry
property the structuring element L(0) for &,
is different from the structuring element R.(0)
for E..
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Since x € Li(x) and xe Ry(x), for all ® in
F(X), we have €.(0) < ® <6, (®). Thus, we
can define morphological gradients using 6.,
€, even if the hemimetric d is not symmetric or
not translation invariant:

Vi(@) =6, (0) - E(w)

Vi(@) =o-&(n)

Vi(®) =6, (o) - o.
In the following, we will call V., Vi, V{
classical symmetric morphological gradient,
classical internal morphological gradient, and
classical external morphological gradient,
respectively.

To facilitate a comparative analysis
between the gradients derived from the rough
approximation framework and the traditional
morphological gradients (utilizing various
automated thresholding techniques), we
introduce a visualization approach based on
superimposing the resulting gradient images.
Specifically, for each input image, both the
new gradient and the classical gradient are
computed and overlaid. Points corresponding
to contours or edges identified by the new
gradient are highlighted in red, those from the
classical gradient are shown in green, and
regions where both gradients agree are
displayed in black.

gr(01) + V(o) gr (@) + V7 (@) gf (@)+ Vi ()
Figure 10. Otsu threshold, r =7

At the top of Figure 10 the figure o is obtained
using Rec. 709 luminance formula and at the
bottom of the figure > is obtained using L*.
The threshold is determined using Otsu
method. The radius used in Figure 10 is r=7.
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4. MULTISCALE REGULARIZED
GRADIENTS

We also propose a multiscale regularized
gradient in a similar way with the algorithm
presented in [b] based on the regularized
gradient [ri]. Let us consider a sequence of n
positive real numbers p = (11, 12, ..., ) such
that
n<n<..<mn

Algorithm for computing the multiscale
regularized gradient g(m) using the scale p

1. compute g, () < APp™(®) - App™(®)

2. 8(0) < gry(w)
3.fori=2tondo
//compute “regularized” gradient at scale

gr,() < App"(®) - App"i(®)
gri(w) <~ gri(w) - App©i o @ri(gri(“)))
8r;(®) <= App"i-1 (g (w) )

//update g(m)

g(®) < sup {g(w), gr,(0)}
end for
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Figure 11

In Figure 11 we compare the results of
the preceding algorithm for r; = 1.5 + I,
applied to the image ®: (obtained using L*,
see Figure 10) for n = 2 and n = 8. The
threshold employed is determined by
selecting the minimum value among the
thresholds for symmetric, internal, and
external gradients associated with gn(w>) all
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computed using Otsu method (n= 2 versus n =
8). The images g»>(m2) and gg(w>) are overlaid
as in Section 3. Points displayed in green are
points added by gg(®2).

5. CONCLUSION

In this paper, we defined new variants of
the morphological gradient constructed from
the neighborhood-controlled fuzzy upper and
lower rough approximation operators
(introduced in [2]), leveraging their extensive
and anti-extensive nature as a natural
analogue to dilation and erosion. To assess
how these fuzzy rough gradients compare to
their classical counterparts, we employed a
comparative visualization approach based on
the superposition of resulting gradient images.
Our C implementations, using SDL3 for
efficient pixel access, enabled a controlled and
reproducible evaluation framework.

The experimental results indicate that the
proposed operators behave in a broadly
similar manner to the classical morphological
gradient, while exhibiting a tendency to
produce thinner and more localized edge
structures (although more tests are needed).
This behavior suggests that the fuzzy rough
formulations may offer advantages in contexts
where fine-grained or uncertainty-sensitive
edge delineation is desirable. However, our
present study is limited to the Euclidean
distance, chosen deliberately to maintain
exact comparability with the classical
operators, and relies on a global automatic
thresholding scheme.

Future work will address these limitations
by incorporating hemimetrics tailored to local
intensity variations, thereby allowing the
fuzzy rough operators to better accommodate
heterogeneous or textured regions. Such an
extension is expected to further reveal the
potential of these operators as flexible,

context-adaptive tools within the broader
domain of morphological image analysis.
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